
Project Report on

A STUDY ON IMAGE SUPERRESOLUTION FROM
MULTIPLE FRAMES USING ARTIFICIAL NEURAL

NETWORK

Submitted to University Grants Commission, Bahadurshah Marg, New
Delhi

In respect to the Minor Project Sanctioned
No. F.MRP/12th Plan/14-15/KLMG073 dated 10.12.14

Project Period 27/01/2015 to 31/03/2017

 Submitted By

Dr. Saritha M,
Associate Professor,
Department of Electronics,
NSS College, Rajakumari,
Idukki, Kerala

ABSTRACT
Super resolution imaging refers to inferring the missing high resolution

image from low resolution image(s). Super resolution methods are generally
classified into reconstruction based and learning based methods. In this
project a neural network is used for the super resolution. Neural networks are
among the most important machine learning techniques and thus good
candidates for a project in artificial intelligence. A neural network is a data
processing system consisting of a large number of simple, highly
interconnected processing elements in an architecture inspired by the structure
of the cerebral cortex portion of the brain. Hence, neural networks are often
capable of doing things which humans or animals do well but which
conventional computers often do poorly. They have emerged in the past few
years as an area of unusual opportunity for research, development and
application to a variety of real world problems. Indeed, neural networks
exhibit characteristics and capabilities not provided by any other technology.
In this project first we train the network using low resolution images and high
resolution images, and then we give another low resolution image to the
network. It will produce high resolution image of the low resolution image.
Neural networking applications are very fast and will give good results when
comparing with the normal methods.

1. Introduction
Image Super-Resolution is the most widely and expensive area of

research and they can decade to solve the problem of limited resolution by
image acquisition devices and also dependent on sensor. But, high- resolution
sensor is very expensive. And for image acquisition could be as simple and it
also involves preprocessing such as scaling. Also the available camera may
not always sufficient for any given application. So, we need increase the
current resolution by two ways, either reducing the pixel size or by increasing
the chip size. However it has some limitations which can generate noise and
degrade the image quality. Therefore, a new method is required to increase the
resolution of the image. Super resolution can used many application likes
Medical imaging, Satellite imaging, Remote imaging, Video surveillance,
Enlarging consumer photograph for higher quality, Enlarging consumer
photograph for higher quality. Now, Super-Resolution (SR) is to obtain a
high-resolution (HR) image using one or more observed low-resolution (LR)
images by down-sampling, de-blurring, and de-noising. Where, Low
Resolution (LR) image represents low pixel quality and it provide less
accurate details. High-Resolution (HR) represents high pixel quality and it
provides more accurate details.

SR techniques can prove useful in many different applications, and
these applications can have different requirements in terms of both quality and
computational complexity. The quality may also vary for different methods
based on characteristics of the input image. The implementation complexity
may be affected by implementation specifics, such as the availability of
specific optimized libraries. Finally the artifacts caused by poor SR
performance can be more visually distracting than blurring from interpolation.
For these and other reasons choosing between SR methods is a complex task.

1.1 Super Resolution
Super-resolution, loosely speaking, is the process of recovering a high-

resolution image from a set of low resolution input images or from a single
low resolution image. Any given set of source low resolution (LR) images
only captures a finite amount of information from a scene; the goal of SR is to
extract the independent information from each image in that set and combine
the information into a single high resolution (HR) image. The only
requirement is that each LR image must contain some information that is
unique to that image. This means that when these LR images are mapped onto
a common reference plane their samples must be sub pixel shifted from
samples of other images – otherwise the images would contain only redundant
information and SR reconstruction would not be possible.

In the Super-resolution techniques, that classifies into two major parts:
Frequency domain approach, and spatial domain approach. Frequency domain
approach, which can perform Fourier transform of an image. These methods
are simple and computationally cheap, they are extremely sensitive to model
error, limiting their use and Spatial domain approach, which can perform
directly on pixel and it is also more popular method. These methods are
computationally expensive.
1.1.1 Frequency Domain Methods

A major class of SR methods utilizes a frequency domain formulation
of the SR problem. Frequency domain methods are based on three
fundamental principles:

i) The shifting property of the Fourier transform (FT)
ii) The aliasing relationship between the continuous Fourier

transform (CFT) and the discrete Fourier transform (DFT)

iii) The original scene is band-limited.
These properties allow the formulation of a system of equations relating the
aliased DFT coefficients of the observed images to samples of the CFT of the
unknown scene. These equations are solved yielding the frequency domain
coefficients of the original scene, which may then be recovered by inverse
DFT. Formulation of the system of equations requires knowledge of the
translational motion between frames to sub-pixel accuracy. Each observation
image must contribute independent equations, which places restrictions on the
inter-frame motion that contributes useful data
1.1.2 Spatial Domain Methods

Approaching the super-resolution problem in the frequency domain
makes a lot of sense because it is relatively simple and computationally
efficient. However, there are some problems with a frequency domain
formulation. For one, it restricts the inter-frame motion to be translational
because the DFT assumes uniformly spaced samples. Another disadvantage is
that prior knowledge that might be used to constrain or regularize the super-
resolution problem is often difficult to express in the frequency domain. Since
the super-resolution problem is fundamentally ill-posed4, incorporation of
prior knowledge is essential to achieve good results. A variety of techniques
exist for the super-resolution problem in the spatial domain. These solutions
include interpolation, deterministic regularized techniques, stochastic
methods, iterative back projection, and projection onto convex sets among
others. The primary advantages to working in the spatial domain are support
for unconstrained motion between frames and ease of incorporating prior
knowledge into the solution.
1.1.3 Implementation of Super-Resolution

For the technical implementation of Super-Resolution in two ways:
Single-frame and Multi-frame image Super Resolution. Single-frame Super-
Resolution methods to generate single high-resolution image from single
degraded or noisy or blurred image. And Multi-frame Super-Resolution is to
generate the high-resolution (HR) image from multiple low-resolution images
perspectives of a same scene and also increase spatial resolution by fusing
information.

There are mainly three methods for this implementation: interpolation
based methods, reconstruction based methods, and learning based methods.
The interpolation based methods are simple but tend to blur the high
frequency details. The reconstruction based methods enforce a reconstruction
constraint which requires that the smoothed and down-sampled version of the
HR image should be close to the LR image. The learning based methods
“hallucinate” high frequency details from a training set of HR/LR image pairs.
The learning based approach highly relies on the similarity between the
training set and the test set. It is still unclear how many training examples are
sufficient for the generic images.
1.2 Methodology
After an extensive study of image resolutions, we have decided to use the
following technique to develop a robust, credible super resolution system

 Neural network
 Back propagation algorithm

A neural network is a computer system modeled on the human brain and
nervous system and Back propagation algorithm is the algorithm used for
teaching the neural network.

The super resolution system operates on two phases. The first phase is
involves finding the weights of the neural network. This process is called
training or teaching. Second phase is the creation of high resolution image
using this trained neural network.
1.2.1 Neural Network

Neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature, the
connections between elements largely determine the network function. We can
train a neural network to perform a particular function by adjusting the values
of the connections (weights) between elements.

Typically, neural networks are adjusted, or trained, so that a particular
input leads to a specific target output. The next figure illustrates such a
situation. There, the network is adjusted, based on a comparison of the output
and the target, until the network output matches the target. Typically, many
such input/target pairs are needed to train a network

Figure 1 : Neural Network Training

Neural networks have been trained to perform complex functions in
various fields, including pattern recognition, identification, classification,

speech, vision, and control systems. Neural networks can also be trained to
solve problems that are difficult for conventional computers or human beings.
1.2.2 Back Propagation Algorithm

Back Propagation, an abbreviation for "backward propagation of
errors", is a common method of training artificial neural networks used in
conjunction with an optimization such as gradient descent. The method
calculates the gradient of a loss function with respect to all the weights in the
network. The gradient is fed to the optimization method which in turn uses it
to update the weights, in an attempt to minimize the loss function.

Back propagation requires a known, desired output for each input value
in order to calculate the loss function gradient. It is therefore usually
considered to be a supervised learning method, although it is also used in
some unsupervised networks such as auto encoders. It is a generalization of
the delta rule to multi-layered feed forward networks, made possible by using
the chain rule to iteratively compute gradients for each layer. Back
propagation requires that the activation function used by the artificial
neurons (or "nodes") be differentiable.

Figure 2: Back Propagation Algorithm

The back propagation learning algorithm can be divided into two phases:
propagation and weight update.
Phase 1: Propagation
Each propagation involves the following steps:

1. Forward propagation of a training pattern's input through the neural
network in order to generate the propagation's output activations.

2. Backward propagation of the propagation's output activations through
the neural network using the training pattern target in order to generate
the deltas (the difference between the targeted and actual output values)
of all output and hidden neurons.

Phase 2: Weight update
For each weight-synapse follow the following steps:

1. Multiply its output delta and input activation to get the gradient of the
weight.

2. Subtract a ratio (percentage) from the gradient of the weight.
This ratio (percentage) influences the speed and quality of learning; it is called
the learning rate. The greater the ratio, the faster the neuron trains; the lower
the ratio, the more accurate the training is. The sign of the gradient of a weight
indicates where the error is increasing; this is why the weight must be updated
in the opposite direction.
Repeat phase 1 and 2 until the performance of the network is satisfactory.
2. Artificial Neural Network
2.1 Artificial Neural Network

Artificial Neural Networks (ANNs) are computational modeling tools
that have recently emerged and found extensive acceptance in many

disciplines for modeling complex real-world problems. ANNs may be defined
as structures comprised of densely interconnected adaptive simple processing
elements (called artificial neurons or nodes) that are capable of performing
massively parallel computations for data processing and knowledge
representation. Although ANNs are drastic abstractions of the biological
counterparts, the idea of ANNs is not to replicate the operation of the
biological systems but to make the use of what is known about the
functionality of the biological networks for solving complex problems. The
attractiveness of ANNs comes from the remarkable information processing
characteristics of the biological system such as nonlinearity, high parallelism,
robustness, fault and failure tolerance, learning, ability to handle imprecise
and fuzzy information, and their capability to generalize.
 Artificial models possessing such characteristics are desirable because

(i) Nonlinearity allows better fit to the data
(ii) Insensitivity provides accurate prediction in the presence of

uncertain data and measurement errors
(iii) High parallelism implies fast processing and hardware failure-

tolerance
(iv) Learning and adaptively allow the system to update (modify) its

internal structure in response to changing environment
(v) Generalization enables application of the model to unlearned data.

The main objective of ANN-based computing (neurocomputing) is to
develop mathematical algorithms that will enable ANNs to learn by
mimicking information processing and knowledge acquisition in the human
brain. ANN-based models are empirical in nature; however they can provide
practically accurate solutions for precisely or imprecisely formulated
problems and for phenomena that are only understood through experimental
data and field observations. In microbiology, ANNs have been utilized in a

variety of applications ranging from modeling, classification, pattern
recognition, and multivariate data analysis. Sample applications include

(i) interpreting pyrolysis mass spectrometry, GC, and HPLC
data,

(ii) pattern recognition of DNA, RNA, protein structure, and
microscopic images,

(iii) prediction of microbial growth, biomass, and shelf life of food
products, and

(iv) identification of microorganisms and molecules
2.2 ANNs and biological neural networks

Because the biological neuron is the basic building block of the nervous
system, its operation will be briefly discussed for understanding artificial
neuron operation and the analogy between ANNs and biological networks.
2.2.1 Biological neuron
 The human nervous system consists of billions of neurons of various
types and lengths relevant to their location in the body. Figure 2 shows a
schematic of an oversimplified biological neuron with three major functional
units – dendrites, cell body, and axon. The cell body has a nucleus that
contains information about hereditary traits, and plasma that holds the
molecular equipment used for producing the material needed by the neuron.
The dendrites receive signal from other neurons and pass them over to the cell
body.
 The total receiving area of the dendrites of a typical neuron is
approximately 0.25 mm. The axon, which branches into collaterals, receives
signals from the cell body and them away through the synapse (a micro gap)
to the dendrites of neighboring neurons. A schematic illustration of the signal
transfer be two neurons through the synapse is shown in Figure 3 (b). An
impulse, in the form of an electric signal, travels within the dendrites and

through the cell body towards the pre-synaptic membrane of the synapse.
Upon arrival at the membrane, a neurotransmitter (chemical) is released from
the vesicles in quantities proportional to the strength of the incoming signal.
The neurotransmitter diffuses within the synaptic gap towards the post-
synaptic membrane, and eventually into the dendrites of neighboring neurons,
thus them (depending on the threshold of the receiving neuron) to generate a
new electrical signal. The generated signal passes through the second

Figure 4 (a) Schematic of biological neuron. (b) Mechanism of signal transfer between two biological neurons.

 neuron(s) in a manner identical to that just described. The amount of
signal that passes through receiving neuron depends on the intensity of the
signal emanating from each of the feeding neurons, their synaptic strengths,
and the threshold of the receiving neuron. Because a neuron has a large
number of dendrites / synapses, it can receive and transfer many signals
simultaneously. These signals may either assist (excite) or inhibit the firing of

the neuron. This simplified mechanism of signal transfer constituted the
fundamental step of early neurocomputing development (e.g., the binary
threshold unit of McCulloh and Pitts, 1943) and the operation of the building
unit of ANNs.
2.2.2 Analogy
 The crude analogy between artificial neuron and biological neuron is
that the connections between nodes represent the axons and dendrites, the
connection weights represent the synapses, and the threshold approximates the
activity in the soma Figure 4 illustrates n biological neurons with various
signals of intensity x and synaptic strength w feeding into a neuron with a
threshold of b, and the equivalent artificial neurons system. Both the
biological network and ANN learn by incrementally adjusting the magnitudes
of the weights or synapses strengths .

Figure 4 : Signal interaction from n neurons and analogy to signal summing in an artificial neuron comprising the single layer perceptron.
2.2.3. Artificial neuron
 In 1958, Rosenblatt introduced the mechanics of the single artificial
neuron and introduced the ‘Perception’ to solve problems in the area of
character recognition . Basic findings from the biological neuron operation
enabled early researchers to model the operation of simple artificial neurons.
An artificial processing neuron receives inputs as stimuli from the
environment, combines them in a special way to form a ‘net’ input(j), passes

that over through a linear threshold gate, and transmits the (output, y) signal
forward to another neuron or the environment, as shown in Figure 4. Only
when j exceeds (i.e., is stronger than) the neuron’s threshold limit (also called
bias, b), will the neuron fire (i.e. becomes activated). Commonly, linear
neuron dynamics are assumed for calculating j The net input is computed as
the inner (dot) product of the input signals (x) impinging on the neuron and
their strengths (w). For n signals, the neuron operation is expressed as

Equation 1

With 1 indicating ‘on’ and 0 indicating ‘off’ (Figure 2), or class A and B,
respectively, in solving classification problems. Positive connection weights
(wi > 0) enhance the net signal (j) and excite the neuron, and the link is called
excitory, whereas negative weights reduce j and inhibit the neuron activity,
and the link is called inhibitory. The system comprised of an artificial neuron
and the inputs as shown in Figure 4 is called the Perceptron which establishes
a mapping between the inputs activity (stimuli) and the output In Equation.
(1), the neuron threshold may be considered as an additional input node whose
value always unity (i.e., x=1) and its connection weight is equal to b. In such
case, the summation in Equation. (1) is run from 0 to n, and the net signal j is
compared to 0.
2.2.4. Perceptrons

The perceptron (Figure 4) can be trained on a set of examples using a
special learning rule. The perceptron weights (including the threshold) are
changed in proportion to the difference (error) between the target (correct)
outputs, Y, and the perceptron solution, y, for each example. The error is a
function of all the weights and forms an irregular multidimensional complex
hyper plane with many peaks, saddle points, and minima. Using a specialized

search technique, the learning process strives to obtain the set of weights that
corresponds to the global minimum. Rosenblatt (1962) derived the perceptron
rule that will yield an optimal weight vector in a finite number of iterations,
regardless of the initial values of the weights.

Figure 5 (a) Linear vs. nonlinear separability. (b) Multilayer perceptron showing input, hidden, and output layers and nodes with feed forward links.
This rule, however, can only perform accurately with linearly separable
classes, in which a linear hyper plane can place one class of objects on one
side of the plane and the other class on the other side. Fig. 5a shows linearly
and nonlinearly separable two-object classification problems. In order to cope
with nonlinearly separable problems, additional layer(s) of neurons placed
between the input layer (containing input nodes) and the n output neuron are
needed leading to the multilayer perceptron (MLP) architecture (Hecht-

Nielsen, 1990), as shown in Fig. 5b. Because these intermediate layers do not
interact with the external environment, they are called hidden layers and their
nodes called hidden nodes. The addition of intermediate layers revived the
perceptron by extending its ability to solve nonlinear classification problems.

Using similar neuron dynamics, the hidden neurons process the
information received from the input nodes and pass them over to output layer.
The learning of MLP is not as direct as that of the simple perceptron. For
example, the back propagation network is one type of MLP trained by the
delta learning rule. However, the learning procedure is an extension of the
simple perceptron algorithm so as to handle the weights connected to the
hidden nodes.
2.2.5. Biological vs. artificial network
 Central to our biological neural network is the cerebral cortex
(cerebrum) which is a 2–3 mm thick flat sheet of massively interconnected
neurons with an approximate surface area of 2200 cm containing about 10
11neurons (Jain et al., 1996). Each neuron is connected to 1000–10,000 other,
making approximately 10 to 10 interconnections. In contrast, ANNs typically
range from 10 to as high as 10,000 neurons for the most sophisticated
networks implementable on a digital computer, with a connection density
ranging from five to 100 links per neuron with regard to their operation and
structure, ANNs are considered homogenous and often operate
deterministically, whereas those of the human cortex are extremely
heterogeneous and operate in a mixture of complex deterministic and
stochastic manner. With regard to functionality, it is not surprising to see that
ANNs compare, though roughly, to biological networks as they are developed
to mimic the computational properties of the brain such as adaptively, noise
(data) and fault (neurons and connections lost) tolerance.
2.2.6. Learning

 The ability to learn is a peculiar feature pertaining to intelligent
systems, biological or otherwise. In artificial systems, learning is viewed as
the process of updating the internal representation of the system in response to
external stimuli so that it can perform a specific task. This includes modifying
the network architecture, which involves adjusting the weights of the links,
pruning or creating some connection links, and/or changing the firing rules of
the individual neurons. ANN learning is performed iteratively as the network
is presented with training examples, similar to the way we learn from
experience. An ANN-based system is said to have learnt if it can

(i) Handle imprecise, fuzzy, noisy, and probabilistic information
without noticeable adverse effect on response quality, and

(ii) Generalize from the tasks it has learned to unknown ones.
2.3. Challenging problems
Generally, ANNs are more robust and often outperform other computational
tools in solving a variety of problems from seven categories.
2.3.1. Pattern classification
 Pattern classification deals with assigning an un known input pattern,
using supervised learning, to one of several prespecified classes based on one
or more properties that characterize a given class, as shown in Figure 6a.
Classification applications from the area of microbiology include
classification of commodities based on their microbiological characteristics,
and characterization of microorganisms using pyrolysis mass spectrometry
data. Unlike discriminate analysis in statistics, ANNs do not require the
linearity assumption and can be applied to nonlinearly separable classes
(Garth et al., 1996).
2.3.2. Clustering
 Clustering is performed via unsupervised learning in which the clusters
(classes) are formed by exploring the similarities or dissimilarities between
the input patterns based on their inter-correlations (Figure 6b). The network

assigns similar’ patterns to the same cluster. Example applications from
microbiology include sub-species discrimination using pyrolysis mass
spectrometry and Kohonen networks.

Figure 6: Problems solved by ANNs. (a) Pattern classification. (b) Clustering. (c) Function approximation. (d) Forecasting. (e) Association

2.3.3. Function approximation (modeling)
 Function approximation (modeling) involves training ANN on input–
output data so as to approximate the underlying rules relating the inputs to the
outputs (Figure 6c). Multilayer ANNs are considered universal approximates
that can approximate any arbitrary function to any degree of accuracy, and
thus are normally used in this application. Function approximation is applied
to problems (i) where no theoretical model is available, i.e., data obtained
from experiments or observations are utilized, or (ii) to substitute theoretical
models that are hard to compute analytically by utilizing data obtained from

such models. Examples from this category are numerous in microbiology, e.g.,
predicting microbial growth.
2.3.4. Forecasting
Forecasting includes training of an ANN on samples from a time series
representing a certain phenomenon at a given scenario and then using it for
other scenarios to predict (forecast) the behavior at subsequent times
(Figure6d). That is, the network will predict Y(t + 1) from one or more
previously known historical observations [e.g., Y(t2-2), Y(t2-1), and Y(t),
where t is the time step]. Microbial growth curves can be modeled in such a
manner.
2.3.5 Optimization
 Optimization is concerned with finding a solution that maximizes or
minimizes an objective function subject to a set of constraints. Optimization is
a well-established field in mathematics; however ANNs, such as the Hopfield
network were found to be more efficient in solving complex and nonlinear
optimization problems.
2.3.6 Association
Association involves developing a pattern association ANN by training on
ideal noise free data and subsequently using this ANN to classify noise
corrupted data (e.g., for novelty detection). The associative network may also
be used to correct (reconstruct) the corrupted data or completely missing data
(or image), as shown in Figure 6e. Hopfield and Hamming networks are
especially used for this application (Lippmann, 1987), and to a lesser degree
multilayer back propagation ANNs trained on pat- terns with identical input
and output.
2.3.7 Control

Control is concerned with designing a network, normally recurrent, that will
aid an adaptive control system to generate the required control inputs such
system to generate the required control inputs such on system feedback.
2.4 Classification of ANNs
 ANNs may be classified in many different ways according to one or
more of their relevant features. Generally, classification of ANNs may be
based on

(i) The function that the ANN is designed to serve (e.g., pattern
association, clustering).

(ii) The degree (partial / full) of connectivity of the neurons in the
network

(iii) The direction of flow of information within the network (recurrent
and non recurrent), with recurrent networks being dynamic systems
in which the state at any given time is dependent on previous states.

(iv) The type of learning algorithm, which represents a set of systematic
equations that utilize the outputs obtained from the network along
with an arbitrary performance measure to update the internal
structure of the ANN.

(v) The learning rule (the driving engine of the learning algorithm).
(vi) The degree of learning supervision needed for ANN training.
Supervised learning involves training of an ANN with the correct answers

(i.e., target outputs) being given for every example, and using the deviation
error) of the ANN solution from corresponding target values to determine the
required amount by which each weight should be adjusted. Reinforcement
learning is supervised, however the ANN is provided with a critique on
correctness of output rather than the correct answer itself. Unsupervised
learning does not require a correct answer for the training examples, however
the network, through exploring the underlying structure in the data and the

correlation between the various examples, organizes the examples into
clusters (categories) based on their similarity or dissimilarity (e.g., Kohonen
networks). Finally, the hybrid learning procedure combines supervised and
unsupervised learning. As examples of classification, Lippmann (1987)
classified ANNs with regard to learning (supervised vs. unsupervised) and
data (binary vs. continuous). Simpson (1990) categorized ANNs with respect
to learning (supervision) and the flow of data in the network (feed forward vs.
feedback). Maren (1991) proposed a hierarchal categorization based on
structure followed by dynamics, then learning. Jain et al. (1996) present a
four-level classification based on the degree of learning supervision, the
learning rule, data flow in the ANN, and the learning algorithm.
2.5 Learning rules
A learning rule defines how exactly the network weights should be adjusted
(updated) between successive training cycles (epochs). There are four basic
types of rules.
2.5.1 Error-Correction Learning (ECL)

The error-correction learning (ECL) rule is used in supervised learning
in which the arithmetic difference (error) between the ANN solution at any
stage (cycle) during training and the corresponding correct answer is used to
modify the connection weights so as to gradually reduce the overall network
error.
2.5.2 The Boltzmann learning (BL)

The Boltzmann learning (BL) rule is a stochastic rule derived from
thermodynamic principles and information. It is similar to ECL, however each
neuron generates an output (or state) based on a Boltzmann statistical
distribution, which renders learning extremely slower.
2.5.3 The Hebbian learning (HL)
The Hebbian learning (HL) rule developed based on neurobiological
experiments, is the oldest learning rule, which postulates that ‘‘if neurons on

both sides of a synapse are activated synchronously and repeatedly, the
synapse’s strength is selectively increased.’’ Therefore, unlike ECL and BL
rules, learning is done locally by adjusting the synapse weight based on the
activities of the neurons.
2.5.4 Competitive learning (CL)
 In the competitive learning (CL) rule, all neurons are forced to compete
among themselves such that only one neuron will be activated in a given
iteration with all the weights attached to it adjusted. The CL rule is speculated
to exist in many biological systems.
2.6 Popular ANNs
 A vast number of networks, new or modifications of existing ones, are
being constantly developed. Simpson (1990) listed 26 different types of
ANNs, and Maren (1991) listed 48. Pham (1994) estimated that over 50
different ANN types exist. Some applications may be solved using different
ANN types, whereas others may only be solved via a specific ANN type.
Some networks are more proficient in solving perceptual problems, while
others are more suitable for data modeling and function approximation. A
brief discussion of the most frequently used ANNs, presented in the order of
their discovery, is given below.
2.6.1. Hopfield networks

This network is a symmetric fully connected two layer recurrent
network that acts as a nonlinear associative memory and is especially efficient
in solving optimization problems. The network is suited to only bipolar or
binary inputs and it implements an energy function. Learning is done by
setting each weight connecting two neurons to the product of the inputs of
these two neurons. When presented with an incomplete or noisy pattern, the
network responds by retrieving an internally stored pattern that most closely
resembles the presented pattern.
2.6.2. Adaptive resonance theory (ART) networks

These are trained by unsupervised learning where the network adapts to
the information environment without intervention. The ART network consists
of two fully interconnected layers, a layer that receives the inputs and a layer
consisting of output neurons. The feed forward weights are used to select the
winning output neuron (cluster) and serve as the long-term memory for the
networks. The feedback weights are the vigilance weights that are used to test
the vigilance and serve as the short-term memory for the network. An ART
network stores a set of patterns in such a way that when the network is
presented with a new pattern it will either match it to a previously stored
pattern, or store it as a new pattern if it is sufficiently dissimilar to the closest.
Like Hopfield nets, ART networks can be used for pattern recognition,
completion, and classification.
2.6.3. Kohonen networks

These networks, also called self-organizing feature maps, are two-layer
networks that transform n-dimensional input patterns into lower-ordered data
where similar patterns project onto points in close proximity to one another.
Kohonen networks are trained in an unsupervised manner to form clusters
within the data (i.e., data grouping). In addition to pattern recognition and
classification, Kohonen maps are used for data compression, in which high-
dimensional data are mapped into a fewer dimensions space while preserving
their content .
2.6.4. Backpropagation networks

These networks are the most widely used type of networks and are
considered the workhorse of ANNs. A back propagation (BP) network is an
MLP consisting of,

(i) An input layer with nodes representing input variables to the
problem

(ii) An output layer with nodes representing the dependent variables
(i.e., what is being modeled)

(iii) One or more hidden layers containing nodes to help capture the
nonlinearity in the data.

Using supervised learning (with the ECL rule), these networks can learn
the mapping from one data space to another using examples. The term back
propagation refers to the way the error computed at the output side is
propagated backward from the output layer, to the hidden layer, and finally to
the input layer. In BPANNs, the data are fed forward into the network without
feedback (i.e., all links are unidirectional and there are no same layer neuron-
to-neuron connections). The neurons in BPANNs can be fully or partially
interconnected. These networks are so versatile and can be used for data
modeling, classification, forecasting, control, data and image compression,
and pattern recognition.
2.6.5. Recurrent networks

In a recurrent network, the outputs of some neurons are fed back to the
same neurons or to neurons in preceding layers. This enables a flow of
information in both forward and backward directions, thus providing the ANN
with a dynamic memory There are special algorithms for training recurrent .
The BP recurrent ANNs are a simple variant of recurrent networks in which
the ‘memory’ is introduced into static feedforward ANNs by a special data
representation (e.g., time delay) followed by training using classic BP.
2.6.6. Counterpropagation networks

These networks, developed by Hecht-Nielsen (1988, 1990), are trained
by hybrid learning to create a self-organizing look-up table useful for function
approximation and classification. As input features are presented to the
network, unsupervised learning is carried out to create a Kohonen map of the
input data. Meanwhile, supervised learning is used to associate an appropriate
output vector with each point on the map. Once the network has been trained,
each newly presented feature vector will trigger a response which is the

average for those feature vectors closest to it in the input data space, thus
simulating a look-up table.
2.6.7. Radial basis function (RBF) networks

These networks are a special case of a multilayer feedforward error-
backpropagation network with three layers .They can be trained by a variety
of learning algorithms including a two step hybrid learning .The hidden layer
is used to cluster the inputs of the network (the nodes in this layer are called
cluster centers). Unlike the sigmoid transfer function in BPANNs, these
networks employ a radial basis function such as a Gaussian kernel. The RBF
is centered at the point specified by the weight vector associated with the unit.
Both the positions and widths of these Gaussian functions must be learnt from
the training patterns. Each output unit implements a linear combination of
these RBFs. The choice between the RBF networks and the BPANNs is
problem dependent. RBF networks train faster than BP but are not as versatile
and are comparatively slower for use. The decision as to which network works
better for a given problem depends strictly on the problem logistics. For
example, a clustering problem requires a Kohonen network, a mapping
problem may be modeled using a variety of ANNs such as BP and RBF
networks, and some optimization problems may only be solved using
Hopfield networks. Other factors governing ANN selection are the input type
(i.e., whether it is Boolean, continuous, or a mixture), and the execution speed
of the network once trained and implemented in serial hardware. Other issues
for ANN selection are discussed by Hudson and Postma
2.8. Back propagation ANNs

To extend the understanding of ANNs from the level of identifying
what these systems are to how to design them, it is imperative to become
familiar with ANN computation and design. For this objective, the BPANNs
are discussed in more detail, for their popularity, and their flexibility and
adaptability in modeling a wide spectrum of problems in many application

areas. The feed forward error back propagation learning algorithm is the most
famous procedure for training ANNs. BP is based on searching an error
surface error as a function of ANN weights) using gradient descent for
point(s) with minimum error. Each iteration in BP constitutes two sweeps:
forward activation to produce a solution, and a backward propagation of the
computed error to modify the weights. In an initialized ANN (i.e., an ANN
with assumed initial weights), the forward sweep involves presenting the
network with one training example. This starts at the input layer where each
input node transmits the value received forward to each hidden node in the
hidden layer. The collective effect on each of the hidden nodes is summed up
by performing the dot product of all values of input nodes and their
corresponding interconnection weights, as described in Equation. (1). Once
the net effect at one hidden node is determined, the activation at that node is
calculated using a transfer function (e.g., sigmoidal function) to yield an
output between 0 and 11 or 21 and 11. The amount of activation obtained
represents the new signal that is to be transferred forward to the subsequent
layer (e.g., either hidden or output layer). The same procedure of calculating
the net effect is repeated for each hidden node and for all hidden layers. The
net effect(s) calculated at the output node(s) is consequently transformed into
activation(s) using a transfer function. The activation(s) just calculated at the
output node(s) represents the ANN solution of the fed example, which may
deviate considerably from the target solution due to the arbitrary selected
interconnection weights. In the backward sweep, the difference (i.e., error)
between the ANN and target outputs is used to adjust the interconnection
weights, starting from the output layer, through all hidden layers, to the input
layer, as will be described in the following section. The forward and backward
sweeps are performed repeatedly until the ANN solution agrees with the target
value within a pre specified tolerance. The BP learning algorithm provides the
needed weight adjustments in the backward sweep.

2.9. Back Propagation (BP) Algorithm
One of the most popular NN algorithms is back propagation algorithm.

Rojas claimed that BP algorithm could be broken down to four main steps.
After choosing the weights of the network randomly, the back propagation
algorithm is used to compute the necessary corrections. The algorithm can be
decomposed in the following four steps:

i) Feed-forward computation
ii) Back propagation to the output layer
iii) Back propagation to the hidden layer
iv) Weight updates The algorithm is stopped when the value of the error

function has become sufficiently small.

Figure 7 Example

 This is very rough and basic formula for BP algorithm. There are some
variation proposed by other scientist but Rojas definition seem to be quite
accurate and easy to follow. The last step, weight updates is happening
throughout the algorithm. BP algorithm will be explained using exercise
example from Figure 7
2.9.1 Worked example

 NN on figure 4 has two nodes (N0,0 and N0,1) in input layer, two
nodes in hidden layer (N1,0 and N1,1) and one node in output layer (N2,0).
Input layer nodes are connected to hidden layer nodes with weights (W0,1-
W0,4). Hidden layer nodes are connected with output layer node with weights
(W1,0 and W1,1). The values that were given to weights are taken randomly
and will be changed during BP iterations. Table with input node values and
desired output with learning rate and momentum are also given in figure 7.
There is also sigmoid function formula f(x) = 1.0/(1.0 + exp(−x)). Shown are
calculations for this simple network (only calculation for example set 1 is
going to be shown (input values of 1 and 1 with output value 1)). In NN
training, all example sets are calculated but logic behind calculation is the
same.
2.9.1.1 Feed-forward computation

Feed forward computation or forward pass is two step process. First
part is getting the values of the hidden layer nodes and second part is using
those values from hidden layer to compute value or values of output layer.
Input values of nodes N0,0 and N0,1 are pushed up to the network towards
nodes in hidden layer (N1,0 and N1,1). They are multiplied with weights of
connecting nodes and values of hidden layer nodes are calculated. Sigmoid
function is used for calculations f(x) = 1.0/(1.0 + exp(−x)). N1, 0 = f(x1) =
f(w0, 0 ∗ n0, 0 + w0, 1 ∗ n0, 1) = f(0.4 + 0.1) = f(0.5) = 0.622459 N1, 1 =
f(x2) = f(w0, 2 ∗ n0, 0 + w0, 3 ∗ n0, 1) = f(−0.1 − 0.1) = f(−0.2) = 0.450166

When hidden layer values are calculated, network propagates forward, it
propagates values from hidden layer up to a output layer node (N2,0). This is
second step of feed forward computation N2, 0 = f(x3) = f(w1, 0 ∗ n1, 0 + w1,
1 ∗ n1, 1) = f(0.06 ∗ 0.622459 + (−0.4) ∗ 0.450166) = f(−0.1427188) =
0.464381 Having calculated N2,0, forward pass is completed.
2.9.1.2 Back propagation to the output layer

Next step is to calculate error of N2,0 node. From the table in figure 4,
output should be 1. Predicted value (N2,0) in our example is 0.464381. Error
calculation is done the following way: N2, 0Error = n2, 0∗(1−n2, 0)∗(N2,
0Desired−N2, 0) = 0.464381(1−0.464381)∗(1−0.464381) = 0.133225 Once
error is known, it will be used for backward propagation and weights
adjustment. It is two step process. Error is propagated from output layer to the
hidden layer first. This is where learning rate and momentum are brought to
equation. So weights W1,0 and W1,1 will be updated first. Before weights can
be updated, rate of change needs to be found. This is done by multiplication of
the learning rate, error value and node N1,0 value. ∆W1, 0 = β ∗ N2, 0Error ∗
n1, 0 = 0.45 ∗ 0.133225 ∗ 0.622459 = 0.037317 Now new weight for W1,0
can be calculated. W1, 0N ew = w1, 0Old + ∆W1, 0 + (α ∗ ∆(t − 1)) = 0.06 +
0.037317 + 0.9 ∗ 0 = 0.097137 ∆W1, 1 = β ∗ N2, 0Error ∗ n1, 1 = 0.45 ∗
0.133225 ∗ 0.450166 = 0.026988 W1, 1N ew = w1, 1Old + ∆W1, 1 + (α ∗ ∆(t
− 1)) = −0.4 + 0.026988 = −0.373012 The value of ∆(t − 1) is previous delta
change of the weight. In our example, there is no previous delta change so it is
always 0. If next iteration were to be calculated, this would have some value.
2.9.1.3 Back propagation to the hidden layer

Now errors has to be propagated from hidden layer down to the input
layer. This is bit more complicated than propagating error from output to
hidden layer. In previous case, output from node N2,0 was known beforehand.
Output of nodes N1,0 and N1,1 was unknown. Let’s start with finding N1,0

error first. This will be calculated multiplying new weight W1,0 value with
error for the node N2,0 value. Same way error for N1,1 node will be found.

N1, 0Error = N2, 0Error ∗ W1, 0N ew = 0.133225 ∗ 0.097317 = 0.012965
N1, 1Error = N2, 0Error ∗ W1, 1N ew = 0.133225 ∗ (−0.373012) = −0.049706
Once error for hidden layer nodes is known, weights between input

and hidden layer can be updated. Rate of change first needs to be calculated
for every weight:

 ∆W0, 0 = β ∗ N1, 0Error ∗ N0.0 = 0.45 ∗ 0.012965 = 0.005834
∆W0, 1 = β ∗ N1, 0Error ∗ n0, 1 = 0.45 ∗ 0.012965 ∗ 1 = 0.005834
∆W0, 2 = β ∗ N1, 1Error ∗ n0, 0 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368
∆W0, 3 = β ∗ N1, 1Error ∗ n0, 1 = 0.45 ∗ −0.049706 ∗ 1 = −0.022368

Than we calculate new weights between input and hidden layer.
W0, 0N ew = W0, 0Old + ∆W0, 0 + (α ∗ ∆(t − 1)) = 0.4 + 0.005834 + 0.9 ∗ 0 =

0.405834
W0, 1N ew = w0, 1Old + ∆W0, 1 + (α ∗ ∆(t − 1)) = 0.1 + 0.005834 + 0 = 0.105384
W0, 2N ew = w0, 2Old + ∆W0, 2 + (α ∗ ∆(t − 1)) = −0.1 + −0.022368 + 0 = −0.122368
W0, 3N ew = w0, 3Old + ∗∆W0, 3 + (α ∗ ∆(t − 1)) = −0.1 + −0.022368 + 0 =

−0.122368
3.1.4 Weight updates
 Important thing is not to update any weights until all errors have been
calculated. It is easy to forget this and if new weights were used while
calculating errors, results would not be valid. Here is quick second pass using
new weights to see if error has decreased.
N1, 0 = f(x1)

= f(w0, 0 ∗ n0, 0 + w0, 1 ∗ n0, 1) = f(0.406 + 0.1) = f(0.506) = 0.623868314
N1, 1 = f(x2)

= f(w0, 2 ∗ n0, 0 + w0, 3 ∗ n0, 1) = f(−0.122 − 0.122) = f(−0.244) = 0.43930085
N2, 0 = f(x3)

= f(w1, 0 ∗ n1, 0 + w1, 1 ∗ n1, 1) = f(0.097 ∗ 0.623868314 + (−0.373) ∗
0.43930085) = f(−0.103343991) = 0.474186972

Having calculated N2,0, forward pass is completed.
Next step is to calculate error of N2,0 node. From the table in figure 4, output
should be 1. Predicted value (N2,0) in our example is 0.464381. Error
calculation is done in following way.
N2, 0Error = n2, 0∗(1−n2, 0)∗(N2, 0Desired−N2, 0)

= 0.474186972∗(1−0.474186972)∗(1−0.474186972)
= 0.131102901

So after initial iteration, calculated error was 0.133225 and new
calculated error is 0.131102. Our algorithm has improved, not by much but
this should give good idea on how BP algorithm works. Although this was
very simple example, it should help to understand basic operation of BP
algorithm. It can be said that algorithm learned through iterations. Number of
iterations in typical NN would be any number from ten to ten thousands. This
is only one example set pass that could be repeated many times until error is
small enough.
2.9.2 Advantages and Disadvantages

Negnevitsky argued that turning point in quest for intelligent machines
was when Kasparov, world chess champion was defeated by computer in New
York in May 1997. Artificial intelligence and NN have been used more and
more in recent decades. Potentials in this area are huge. Here are some NN
advantages, disadvantages and industries where they are being used. NN are
used in cases where rules or criteria for searching an answer are not clear (that
is why NN are often called black box, they can solve the problem but at times
it is hard to explain how problem was solved). They found its way into broad
spectrum of industries, from medicine to marketing and military just to name
few. Financial sector has been known for using NN in classifying credit rating
and market forecasts. Marketing is another field where NN has been used for
customer classification (groups that will buy some product, identifying new
markets for certain products, relationships between customer and company).

Many companies use direct marketing (sending its offer by mails) to attract
customers. If NN could be employed to up the percentage of the response to
direct marketing, it could save companies lot’s of their revenue. At the end of
the day, it’s all about the money. Post offices are known to use NN for sorting
the post (based on postal code recognition). Those were just few examples of
where NN are being used. NN advantages are that they can adapt to new
scenarios, they are fault tolerant and can deal with noisy data. Time to train
NN is probably identified as biggest disadvantage. They also require very
large sample sets to train model efficiently. It is hard to explain results and
what is going on inside NN.
 3. Super Resolution
3.1 Introduction

High-resolution images or videos are required in most digital imaging
applications. Higher resolution offers an improvement of the graphic
information for human perception. It is also useful for the later image
processing, computer vision etc. Image resolution is closely related to the
details included in any image. In general, the higher the resolution is, the more
image details are presented.
3.2 Image Resolution
 The resolution of a digital image can be classified in many different
ways. It may refer to spatial, pixel, temporal, spectral or radiometric
resolution. In the following work, it is dealt mainly with spatial resolution.
 A digital image is made up of small picture elements called pixels.
Spatial resolution is given by pixel density in the image and it is measured in
pixels per unit area. Therefore, spatial resolution depends on the number of
resolvable pixels per unit length. The clarity of the image is directly affected

by its spatial resolution. The precise method for measuring the resolution of a
digital camera is defined by The International Organization for
Standardization (ISO) . In this method, the ISO resolution chart is sensed and
then the resolution is measured as the highest frequency of black and white
lines where it is still possible to distinguish the individual black and white
lines. Final value is commonly expressed in lines per inch (lpi) or pixels per
inch (ppi) or also in line widths per picture height (LW/PH). The standard also
defines how to measure the frequency response of a digital imaging system
(SFR) which is the digital equivalent of the modulation transfer function
(MTF) used for analog devices.
 The effort to attain the very high resolution coincides with technical
limitations. Charged coupled device (CCD) or complementary metal-oxide-
semiconductor (CMOS) sensors are widely used to capture two-dimensional
image signals. Spatial resolution of the image is determined mainly by the
number of sensor elements per unit area. Therefore, straightforward solution
to increase spatial resolution is to increase the sensor density by reducing the
size of each sensor element (pixel size). However, as the pixel size decreases,
the amount of light impact on each sensor element also decreases and more
shot noise is generated. In the literature, the limitation of the pixel size
reduction without obtaining the shot noise is presented.
 Another way to enhance the spatial resolution could be an enlargement
of the chip size. This way seems unsuitable, because it leads to an increase in
capacitance and a slower charge transfer rate . The image details (high
frequency content) are also limited by the optics (lens blurs, aberration effects,
aperture diffractions etc.). High quality optics and image sensors are very
expensive. Super-resolution overcomes these limitations of optics and sensors
by developing digital image processing techniques. The hardware cost is
traded off with computational cost.

3.3 Super resolution
In most digital imaging applications, high resolution images or videos are

usually desired for later image processing and analysis. The desire for high
image resolution stems from two principal application areas: improvement of
pictorial information for human interpretation; and helping representation for
automatic machine perception. Image resolution describes the details
contained in an image, the higher the resolution, the more image details. The
resolution of a digital image can be classified in many different ways: pixel
resolution, spatial resolution, spectral resolution, temporal resolution, and
radiometric resolution. In this context, we are mainly interested in spatial
resolution.

Spatial resolution: a digital image is made up of small picture elements
called pixels. Spatial resolution refers to the pixel density in an image and
measures in pixels per unit area. Figure 8 shows a classic test target to
determine the spatial resolution of an imaging system.

Figure 8

The 1951 USAF resolution test target, a classic test target used to determine
spatial resolution of imaging sensors and imaging systems.

The image spatial resolution is firstly limited by the imaging sensors or
the imaging acquisition device. Modern image sensor is typically a charge-
coupled device (CCD) or a complementary metal-oxide-semiconductor
(CMOS) active-pixel sensor. These sensors are typically arranged in a two-
dimensional array to capture two-dimensional image signals. The sensor size
or equivalently the number of sensor elements per unit area in the First place
determines the spatial resolution of the image to capture. The higher density
of the sensors, the higher spatial resolution possible of the imaging system. An
imaging system with inadequate detectors will generate low resolution images
with blocky effects, due to the aliasing from low spatial sampling frequency.
In order to increase the spatial resolution of an imaging system, one straight
forward way is to increase the sensor density by reducing the sensor size.
However, as the sensor size decreases, the amount of light incident on each
sensor also decreases, causing the so called shot noise. Also, the hardware
cost of sensor increases with the increase of sensor density or correspondingly
image pixel density. Therefore, the hardware limitation on the size of the
sensor restricts the spatial resolution of an image that can be captured. While
the image sensors limit the spatial resolution of the image, the image details
(high frequency bands) are also limited by the optics, due to lens blurs
(associated with the sensor point spread function (PSF)), lens aberration
effects, aperture diffractions and optical blurring due to motion. Constructing
imaging chips and optical components to capture very high-resolution images
is prohibitively expensive and not practical in most real applications, e.g.,
widely used surveillance cameras and cell phone built-in cameras. Besides the
cost, the resolution of a surveillance camera is also limited in the camera
speed and hardware storage. In some other scenarios such as satellite imagery,
it is difficult to use high resolution sensors due to physical constraints.
Another way to address this problem is to accept the image degradations and
use signal processing to post process the captured images, to trade of

computational cost with the hardware cost. These techniques are specifically
referred as Super- Resolution (SR) reconstruction.

Figure 9 The basic idea for super-resolution reconstruction from multiple low-resolution

Super-resolution (SR) are techniques that construct high-resolution
(HR)images from several observed low-resolution (LR) images, thereby
increasing the high frequency components and removing the degradations
caused by the imaging process of the low resolution camera. The basic idea
behind SR is to combine the non-redundant information contained in multiple
low-resolution frames to generate a high-resolution image. A closely related
technique with SR is the single image interpolation approach, which can be
also used to increase the image size. However, since there is no additional
information provided, the quality of the single image interpolation is very
much limited due to the ill-posed nature of the problem, and the lost frequency

components cannot be recovered. In the SR setting, however, multiple low-
resolution observations are available for reconstruction, making the problem
better constrained. The non-redundant information contained in the these LR
images is typically introduced by sub pixel shifts between them. These sub
pixel shifts may occur due to uncontrolled motions between the imaging
system and scene, e.g., movements of objects, or due to controlled motions,
e.g., the satellite imaging system orbits the earth with predefined speed and
path.

Each low-resolution frame is a decimated, aliased observation of the
true scene. SR is possible only if there exists subpixel motions between these
low resolution frames, and thus the ill-posed up sampling problem can be
better conditioned. Figure 9 shows a simplified diagram describing the basic
idea of SR reconstruction. In the imaging process, the camera captures several
LR frames, which are down sampled from the HR scene with subpixel shifts
between each other. SR construction reverses this process by aligning the LR
observations to subpixel accuracy and combining them into a HR image grid
(interpolation), thereby overcoming the imaging limitation of the camera.
 SR algorithms can be categorized according to the number of input
images and output images involved in this process. When a single high -
resolution (HR) image is produced from a single degraded low resolution
image we refer to single image single output super resolution(SISO). Possible
applications of SISO super resolution relate to the possibility of achieving
resolution enhancements, e.g. to improve relate object recognition
performance and enable zoom in capabilities. Other SR algorithms deal with
the integration of multiple LR frames to estimate a unique HR image: In this
case we can speak about multiple input single output (MISO) super resolution.
An example application area is in license plate recognition from a video
stream to increase the alpha numeric recognition rate. A recent focus on SR

research relates to algorithms which aim at reconstructing a set of HR frame
from an equivalent set of LR frames. This approach takes the name of
multiple-input single-output (MIMO) super-resolution, also known as video-
to-video SR. A typical application of these algorithms can be for example the
quality enhancement of a video sequence captured by surveillance cameras.
Table 1 sums up the characteristics of the three SR categories described
(SISO, MISO, and MISO), by mentioning for each of them possible
application domains.

Table 1: Categories of SR algorithms

The first two categories of SR algorithms (SISO and MISO) give rise to two
different families of SR methods, each one recalling different kinds of
procedures: particularly, for SISO super-resolution we speak about single-
image SR methods (a single LR image is used as input to estimate an
underlying HR image), whereas, in the case of MISO super-resolution, we
speak about multi-frame SR methods (the information contained within
multiple under-sampled LR frames is fused to generate a single HR image).
Several algorithms have been developed in the recent years for the two
families of methods mentioned. MIMO super-resolution, instead, represents
an emerging application, where procedures are not consolidated yet and often
follow a sort of mixed approach, by borrowing elements either from SISO and
MISO super-resolution algorithms. Thus, in terms of actual methodologies,
we can distinguish two main families: single-image SR and multi-frame SR.

Figure 1.1 presents a taxonomic diagram of SR according to the classifications
made and the relations between the different categories of SR algorithms.
SR arises in many areas such as:
1. Surveillance video : frame freeze and zoom region of interest(ROI) in video
for human perception (e.g. look at the license plate in the video), resolution
enhancement for automatic target recognition (e.g.try to recognize a criminal's
face).
2. Remote sensing : several images of the same area are provided, and an
improved resolution image can be sought.
3. Medical imaging (CT, MRI, Ultrasound etc): several images limited in
resolution quality can be acquired, and SR technique canbe applied to enhance
the resolution.
4. Video standard conversion, e.g. from NTSC video signal to HDTV signal.
3.4 Image observation model
The digital imaging system is not perfect due to hardware limitations,
acquiring images with various kinds of degradations. For example, the finite
aperture size causes optical blur, modeled by Point Spread Function (PSF).
The finite aperture time results in motion blur, which is very common in
videos. The finite sensor size leads to sensor blur; the image pixel is generated
by integration over the sensor area instead of impulse sampling. The limited
sensor density leads to aliasing effects, limiting the spatial resolution of the
achieved image. These degradations are modeled fully or partially in different
SR techniques.

Figure 10 shows a typical observation model relating the HR image
with LR video frames, as introduced in the literature. The input of the imaging

system is continuous natural scenes, well approximated as band-limited
signals. These signals may be contaminated by atmospheric turbulence before
reaching the imaging system. Sampling the continues signal beyond the
Nyquist rate generates the high resolution digital image (a) we desire. In our
SR setting, usually there exists some kind of motion between the camera and
scene to capture. The inputs to the camera are multiple frames of the scene,
connected by possibly local or global shifts, leading to image (b). Going
through the camera, this motion related high resolution frames will incur
different kinds of blurring effects, such as optical blur and motion blur. These
blurred images (c) are then down sampled at the image sensors (e.g. CCD
detectors) into pixels, by an integral of the image falling into each sensor area.
These down sampled images are further affected by the sensor noise and color
filtering noise. Finally the frames captured by the low resolution imaging
system are blurred, decimated, and noisy versions of the underlying true
scene.

Figure 10 The observation model of a real imaging system

Let X denote the HR image desired, i.e., the digital image sampled above
Nyquist sampling rate from the band limited continuous scene, and Yk be the
kth LR observation from the camera. X and Y’ks are represented in
lexicographical order. Assume the camera captures K LR frames of X, where
the LR observations are related with the HR scene X by

Y k = DkHkFkX + Vk; k = 1; 2; :::;K;
where Fk encodes the motion information for the k-th frame, Hk models the
blurring effects, Dk is the down-sampling operator, and Vk is the noise term.
These linear equations can be rearranged into a large linear system.

The involved matrices Dk, Hk, Fk or M are very sparse, and this linear

system is typically ill-posed. Furthermore, in real imaging systems, these
matrices are unknown and need to be estimated from the available LR
observations, leaving the problem even more ill-conditioned. Thus proper
prior regularization for the high resolution image is always desirable and often
even crucial.
3.5 Multi-frame SR methods
 The basic premise for increasing the spatial resolution in multi-frame
SR techniques is the availability of multiple LR images captured from the
same scene. Multi-frame SR methods work effectively when several LR
images contain slightly different perspectives of the scene to be super-
resolved, i.e. when they represent different "looks" at the same scene. In this
case, each image is seen as a degraded version of an underlying HR image to
be estimated, where the degradation processes can include blurring,
geometrical transformations, and down-sampling. If the geometrical
transformations consist in simple shifts by integer units, then each image
presents the same content and there is no extra information that can be
exploited to reconstruct a common HR image.

Figure 11: Taxonomic diagram of super-resolution

The best case for these methods to work is then when the LR images have
different subpixel shifts from each other and thus they actually bring different
information (each image cannot be obtained from the others).
Broadly speaking, multi-frame SR algorithms can be classified according to
three main approaches followed:
1. Interpolation-based approach
2. Frequency-domain-based approach
3. Regularization-based approach
3.5.1 Interpolation-based approach

 The algorithm is composed of three main stages as Figure 11 shows.
Firstly, relative motion estimation between observed LR images is performed.
This part is often called registration and it is crucial for success of the whole
method. The estimation of relative shifts must have sub pixel precision. It has
been proved that 0.2 px precision of estimation is acceptable . Pixels from
registered LR images are aligned in an HR grid. After this process, points in
the HR grid are non-uniformly spaced and therefore non-uniform interpolation
is applied to produce an image with the enhanced resolution (HR image).
When the HR image is obtained, the restoration follows to remove blurring
and noise. This approach is simple and computationally efficient.

Figure 12 : Non-uniform interpolation approach

 When LR images are aligned, a non-uniform interpolation is necessary
to create a regularly sampled HR image. The basic, very simple method is the
nearest neighbor interpolation. For each point in the HR grid, algorithm
searches for a nearest pixel among all pixels which were aligned in the HR
grid from LR images (as Figure 1 shows). The nearest pixel value is then used
for the current HR grid point.
 Another often used and simple method is the bilinear interpolation. At
first the nearest pixel is found as in the previous case. The algorithm detects
which LR image this pixel comes from and then picks up three other
neighboring pixels from the same LR image. The situation is described in
Figure 12. The HR grid point is surrounded by four LR pixels. These four

pixels form a square so that the unknown value of the HR grid point can be
calculated using the bilinear weighted sum. Similarly, the bicubic
interpolation can be applied if 16 pixels in the LR image are selected (instead
of four). These two methods are efficiently fast, but there is a disadvantage.
Some of the 4 pixels (or 16 pixels) used for the interpolation are not among
the 4 (or 16) absolutely closest pixels from all LR images. The situation is
demonstrated in Figure 4. Some other pixels from other LR image are in fact
closer to the HR grid point. Therefore, they may contain more relevant
information about the unknown HR grid point value. Other methods are based
on a selection of four closest pixels from all pixels from all input LR images
(not only from a single LR image). A question remains in the determination of
the weights for each of these pixels. The weights can be simply determined by
a function of distance between the LR image pixel and the HR grid point.

Figure 13 : Bilinear non-uniform interpolation and near optimal non-uniform interpolation

 Gilman and Bailey introduced near optimal non-uniform interpolation .
They assume that the optimal weights depend only weakly on the image
content and mostly on the relative positions of the available samples.

Therefore, the weights derived from a synthetic image can be applied to the
input LR images with the same offsets. In other words, an arbitrary HR image
is used to generate synthetic LR images with the same properties (size, shifts,
blur) as the input LR images. The values of the weights are then derived to
minimize the mean squared error between the auxiliary HR image and its
version restored from the synthetic LR images. The near optimal interpolation
method provides good results, but the computational cost rises rapidly if the
motion model between the LR images is more complex than global
translation. As a result the near optimal interpolation method as well as the
bilinear interpolation method is suitable only in case of a global, pure
translational movement. Lertrattanapanich and Bose used Delaunay
triangulation and then fit a plane to each triangle to interpolate an HR grid
point inside the triangle . The last part contains deblurring and noise removal.
Restoration can be performed by applying any deconvolution method that
considers the presence of noise. Wiener filtering is widely used. There is a
huge amount of works dedicated to image enhancement, but that is not
directly connected to SR techniques.
3.5.2 Frequency-domain-based approach
 A major class of multi-frames SR methods utilizes a frequency domain
formulation of the SR problem. The main principle is that clues about high
frequencies are spread across the multiple LR images in form of aliased
spectral frequencies. The first frequency-domain SR method can be credited to
Tsai and Huang, who considered SR reconstruction from noise-free LR
images. They proposed to first transform the LR image data into the Discrete
Fourier Transform (DFT) domain, and then combine them according to the
relationship between the aliased DFT coefficients of the observed LR images.
The approach is based on the following principles:

1. The shifting property of the Fourier transform
2. The aliasing relationship between the continuous Fourier transform (CFT)
and the DFT of observed LR images, and
3. The assumption that an original HR image is band-limited.
These properties make it possible to formulate an equation relating the aliased
DFT coefficients of the observed LR images to a sample of the CFT of an
unknown HR image.
Rhee and Kang exploited the Discrete Cosine Transform (DCT), instead of
DFT, in order to reduce memory requirements and the computational costs.
Woods instead, presented an iterative expectation maximization (EM)
algorithm for simultaneously performing the registration, blind de
convolution, and interpolation operations.
The frequency-domain-based SR approach has a number of advantages. The
first advantage is its theoretical simplicity: the relationship between the LR
input images and the HR image is clearly demonstrated. Thus, frequency-
domain-based SR approaches represent an intuitive way to enhance the details
of the images by extrapolating the high-frequency information presented in
the LR images. Secondly, these approaches have low computational
complexity, by also being suitable for parallel implementations. However,
frequency-domain-based SR methods are insufficient to handle real-world
applications, since they require that there only exists a global displacement
between the observed images and the linear space invariant blur during the
image acquisition process.
3.5.3 Regularization-based approach
 Motivated by the fact that the SR computation is, in essence, an ill-
posed inverse problem, due to the insufficient number of LR images or ill-

conditioned blur operators, numerous regularization-based SR algorithms
have been developed to stabilizethe inversion operation, by decreasing the
number of possible solutions. The basic idea of these regularization-based SR
approaches is to use the regularization strategy to incorporate some prior
knowledge of the unknown HR image. The related methods can be broadly
classified into two categories:
 • Deterministic regularization approaches, and
 • Stochastic regularization approaches.
3.7 Single-image SR methods
 Single-image SR is the problem of estimating an underlying HR image,
given only one observed LR image. In this case, it is assumed that there is no
access to the imaging step so that the starting point is a given LR obtained
according to some known or unknown conventional imaging process.
 The generation process of the LR image from the original HR image
that is usually considered can be written as

IL = (IH ∗b) ↓s

 where IL and IH are respectively the LR and HR image, b is a blur
kernel the original image is convoluted with, which is typically modeled as a
Gaussian blur , and the expression '↓s' denotes a down sampling operation by
a scale factor of 's'. The LR image in then a blurred and down-sampled
version of the original HR image.
 Single-image SR aims at constructing the HR output image from as
little as a single LR input image. The problem stated is an inherently ill-posed
problem, as there can be several HR images generating the same LR image.
Single-image SR is deeply connected with traditional "analytical"

interpolation, as they share the same goal. Traditional interpolation methods
(e.g. linear, bicubic, and cubic spline interpolation), by computing the
missing pixels in the HR grid as averages of known pixels, implicitly impose a
"smoothness" prior. However, natural images often present strong
discontinuities, such as edges and corners, and thus the smoothness prior
results in producing ringing and blurring artifacts in the output image. The
goal of SR is thus to achieve better results, by using more sophisticated
statistical priors.
Single-image SR algorithms can be broadly classified into two main
categories: 1. learning-based methods, which make use of machine learning
techniques and often employ a dictionary generated from an image database.
2. reconstruction-based methods, which do not use a training set but rather
define constraints for the target high-resolution image to improve the quality
of the reconstruction.
3.8 Example-Based Super-Resolution
 Example-based single-image SR aims at reversing the image generation
model , by means of a dictionary of image examples that maps locally the
relation between an HR image and its LR counterpart, the latter obtained with
the model . For general up scaling purposes, the examples used are typically
in the form of patches, i.e. squared blocks of pixels (e.g. 3×3 or 5×5 blocks).
The dictionary is then a collection of patches, which, two by two, form pairs.
A pair specifically consists of a LR patch and its HR version with enriched
high frequency details.
Example-based SR algorithms comprise two phases:
1. A training phase, where the above-mentioned dictionary of patches is built;

2. The proper super-resolution phase, that uses the dictionary created to
upscale the input image.

Figure 14: General Scheme of the example based SR procedure

 The dictionary can be of two kinds: an external dictionary, built from a
set of external training images, and an internal one, built without using any
other image than the LR input image itself. This latter case exploits the so
called self-similarity property, typical of natural images, according to which
image structures tend to repeat within and across different image scales:
therefore, patch correspondences can be found in the input image itself and
possibly scaled versions of it. To learn these patch correspondences that
specially take the name of self-examples, we can have one-step schemes or

schemes based on a pyramid of recursively scaled images starting from the LR
input image.

As for the super resolution phase, in example based algorithms the
patch is also the reconstruction unit used in the up scaling procedure. In fact
the LR using the LR–HR patch corresponding in the dictionary, a HR output
patch is constructed, The HR output image is finally built by reassembling all
the reconstructed HR patches. Figure 14 shows in a simple manner the
operating diagram of an example based algorithm, according to the principle
described above.
4. Implementation
4.1 Introduction

This chapter describes the implementation for developing super
resolution software. Super resolution is the process of obtaining HR image
from one or more LR images. This chapter includes the explanation of the
environment we used for developing this software, neural network, training
algorithm, results and a comparison with the existing technologies.
4.2 Software section
4.2.1 Overview of the Matlab environment
MATLAB is a high level technical computing language and interactive
environment for algorithm development, data visualization, data analysis and
numeric computation. Using the MATLAB product, you can solve technical
computing problems faster than with traditional programming languages, such
as C, C++ and FORTRAN.
You can use MATLAB in a wide range of applications, including signal and
image processing, communications, control design, test and measurement,

financial modeling and analysis, and computational biology. Add on tool
boxes (collections of special purpose MATLAB functions, available
separately) extend the MATLAB environment to solve particular classes of
problems in these application areas.
MATLAB provides a number of features for documenting and sharing your
work. You can integrate your MATLAB code with other languages and
applications, and distribute your MATLAB algorithms and applications.
Features include:

 High level language for technical computing
 Development environment for managing code, files and data
 Interactive tools for iterative exploration, design and problem solving
 Mathematical functions for linear algebra, statistics, Fourier analysis,

filtering, optimization, and numerical integration
 2-D and 3-D graphics functions for visualizing data
 Tools for building custom graphical user interfaces
 Functions of integrating MATLAB based algorithms with external

applications and languages, such as C, C++, FORTRAN, COM, Java™
and Microsoft® Excel®

4.2.2 The MATLAB system
The MATLAB system consists of these main parts:
1) Desktop tools and development environment
This part of MATLAB is the set of tools and facilities that help you use and
become more productive with MATLAB functions and files. Many of these

tools are graphical user interfaces. It includes; the MATLAB desktop and
command window, an editor and debugger, a code analyzer, and browsers for
viewing help, the work space, and folders.
2) Mathematical function library
This library is a vast collection of computational algorithms ranging from
elementary functions, like sum, sine, cosine, and complex arithmetic, to more
sophisticated functions like matrix inverse, matrix eigen values, Bessel
functions, and fast Fourier transforms.
3) The language
The MATLAB language is a high level matrix/array language with control
flow statements, functions, data structures, input/output, and object oriented
programming features. It allows both “programming in the small” to rapidly
create quick programs you do not intend to reuse. You can also do
“programming in the large” to create complex application programs intended
for reuse.
4) Graphics
MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. It includes high level
functions for 2-D and 3-D data visualization, image processing, animation,
and presentation graphics. It also includes low level functions that allow you
to fully customize the appearance of graphics as well as to build complete
graphical user interfaces on your MATLAB applications.
5) External interfaces
The external interfaces library allows you to write C/C++ and FORTRAN
programs with MATLAB. It includes facilities for calling routines from

MATLAB (dynamic linking), for calling MATLAB as a computational
engine, and for reading and writing MAT files.
4.3 Neural Network
The network we used for the program is feed forward network. An example of
the feed forward network is given below.

The network we used in this project have 9 units in the input layer and 25
units in the output layer.

Feedforward networks consist of a series of layers. The first layer has a

connection from the network input. Each subsequent layer has a connection
from the previous layer. The final layer produces the network's output.

Feedforward networks can be used for any kind of input to output
mapping. A feedforward network with one hidden layer and enough neurons
in the hidden layers, can fit any finite input-output mapping problem.
MATLAB function for creation of network
feedforwardnet(hiddenSizes,trainFcn)
hiddenSize : hidden layer sizes
trainFcn : Training function
Number of hidden layers we used for the network is 6. Because which give
the maximum convergence. Training Function is ‘traingdm’. The algorithm
‘traingdm’ uses back propagation algorithm.
4.4 Training set preparation

Figure 15: Image observation model

 For the training of the neural network we selected different
low resolution images and corresponding high resolution image. We
choose the image cameraman.tif.

Figure 16: Cameaman.tif, Original 256x256 image

Training input set is prepared by down sampling, Shifting and blurring
the original image. The first training input image is down sampled
cameraman.tif. Resolution of the input image is 128x128. Training output
image is original cameraman.tif. The second training input image is shifted
and blurred 128x128 images. For this set the output image is the same as the
first set.

Training set 1
LR image (128x128) HR image (256x256)

Training set 2
LR Image

128x128,Blurred,Shifted

HR Image
256x256

Input and output matrix for training
To prepare the input matrix we patched the input image by 3x3 matrix with
overlapping. For the output matrix patch matrix size is 5x5. These small
matrix are converted to column matrix (i.e. 9x1 and 25x1) and concatenated
together. Input matrix size is 9x16384 and output matrix size is 25x16384.
4.5 Training of network
traingdm
traingdm is a network training function that updates weight and bias values
according to gradient descent with momentum. To train the neural network we
use the Matlab code

net.trainFcn = 'traingdm'
[net,tr,Y,E,Pf,Af] = train(net,P,T,Pi,Ai)
LHS
net: Network
P: Training input matrix
T: Training output matrix
Pi: Initial input delay conditions (default = zeros)
Ai: Initial layer delay conditions (default = zeros)
RHS
net :New network
tr: Training record (epoch and perf)
Y: Network outputs
E: Network errors
Pf: Final input delay conditions
Af: Final layer delay conditions
traingdm can train any network as long as its weight, net input, and transfer
functions have derivative functions.
Backpropagation is used to calculate derivatives of performance perf with
respect to the weight and bias variables X. Each variable is adjusted according
to gradient descent with momentum,
dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.
Training stops when any of these conditions occurs:

 The maximum number of epochs (repetitions) is reached.
 The maximum amount of time is exceeded.
 Performance is minimized to the goal.
 The performance gradient falls below min_grad.
 Validation performance has increased more than max_fail times since

the last time it decreased (when using validation).
4.6 Results

LR Image HR Image PSNR

128x128

256x25
6

28.1
8

LR Image HR Image PSNR

64x64

128x128

20.33

64x64

128x128

21.61

64x64

128x128

24.40

4.7 Conclusion and future scope
Super resolution is the process of obtaining a high resolution image

from one or more low resolution images. We can use neural network for super
resolution. Training of one image set will give rise to a generalized network
for super resolution. Super resolution using neural network is very fast when
comparing to other methods. In this project we used gray scale images for
training and testing. But the same network can be used for color images also.
When considering PSNR, the result is good. All the test result have PSNR
greater than 20. With more training of the net work the PSNR will increase.
Also taking DCT of the images is another way to increase PSNR.

Bibliography
[1] H. Greenspan, _Super-Resolution in Medical Imaging,_ The Computer
Journal, vol. 52,no. 1, pp. 43_63, Jan. 2009.
[2] M. T. Merino and J. Nunez, _Super-Resolution of Remotely Sensed
Images With Variable-Pixel Linear Reconstruction,_ IEEE Transactions on
Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1446_1457, May 2007.
[3] A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, _Super-
resolution target identication from remotely sensed images using a Hopfield
neural network,_ IEEE Transactions
on Geoscience and Remote Sensing, vol. 39, no. 4, pp. 781_796, Apr. 2001.
[4] E. Engin and M. Özcan, _Moving target detection using super-resolution
algorithms withan ultra wideband radar,_ International Journal of Imaging
Systems and Technology,vol. 20, no. 3, pp. 237_244, 2010.
[5] S. Ebihara, M. Sato, and H. Niitsuma, _Super-Resolution of Coherent
Targets by a Directional Borehole Radar,_ IEEE Transactions on Geoscience
and Remote Sensing, vol. 38, no. 4, pp. 1725_1732, Jul. 2000.
[6] A. Gehani and J. H. Reif, _Super-Resolution Video Analysis for Forensic
Investigations,_ in IFIP WG 11.9 International Conference on Digital
Forensics, ser. IFIP, vol. 242. Springer, 2007, pp. 281_299.
[7] Y. Wang, R. Fevig, and R. R. Schultz, _Super-resolution mosaicking of
UAV surveillance video,_ in IEEE International Conference on Image
Processing (ICIP), 2008, pp. 345_348.
[8] T. S. Huang and R. Y. Tsai, _Multiframe image restoration and
registration,_ Advances in Computer Vision and Image Processing, vol. 1, no.
7, pp. 317_339, 1984.
[9] M. Irani and S. Peleg, _Super resolution from image sequences,_ in 10th
International Conference on Pattern Recognition, vol. 2, Jun. 1990, pp.
115_120.

[10] S. Borman and R. Stevenson, _Super-Resolution from Image Sequences
_ A Review,_ in Midwest Symposium on Circuits and Systems, Notre Dame,
IN, USA, 8 1998, pp. 374_378.
 [11] S. C. Park, M. K. Park, and M. G. Kang, _Super-Resolution Image
Reconstruction: A Technical Overview,_ IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 21_36, 5 2003.
[12] C. Mancas-Thillou and M. Mirmehdi, _An Introduction to Super-
Resolution Text,_ in Digital Document Processing, ser. Advances in Pattern
Recognition. Springer London, 2007, pp. 305_327.
[13] J. Tian and K.-K. Ma, _A survey on super-resolution imaging,_ Signal,
Image and Video Processing (SIViP), vol. 5, no. 3, pp. 329_342, 2011.
[14] H. Ur and D. Gross, _Improved Resolution from Subpixel Shifted
Pictures,_ CVGIP:Graph. Models Image Process., vol. 54, no. 2, pp. 181_186,
Mar. 1992.
[15] A. Papoulis, _Generalized Sampling Expansion,_ IEEE Transactions on
Circuits and Systems,, vol. 24, no. 11, pp. 652_654, Nov. 1977.
[16] N. K. Bose and N. A. Ahuja, _Superresolution and Noise Filtering Using
Moving Least Squares,_ IEEE Transactions on Image Processing, vol. 15, no.
8, pp. 2239_2248, Aug.2006.
[17] A. J. Patti, M. I. Sezan, and A. M. Tekalp, _Superresolution Video
Reconstruction with Arbitrary Sampling Lattices and Nonzero Aperture
Time,_ IEEE Transactions on Image Processing, vol. 6, no. 8, pp. 1064_1076,
Aug. 1997.
[18] S. Rhee and M. G. Kang, _DCT-Based Regularized Algorithm for High-
Resolution Image Reconstruction,_ in IEEE International Conference on
Image Processing (ICIP). Los Alamitos, CA: IEEE, Oct. 1999, pp. 184_187.
[19] N. A. Woods, N. P. Galatsanos, and A. K. Katsaggelos, _Stochastic
Methods for Joint Registration, Restoration, and Interpolation of Multiple

Undersampled Images,_ IEEE Transactions on Image Processing, vol. 15, no.
1, pp. 201_213, Jan. 2006.
[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, _Maximum Likelihood
from Incomplete Data via the EM Algorithm,_ Journal of the Royal Statistical
Society, vol. 39, no. 1, pp. 1_38, 1977.
[21] N. Nguyen and P. Milanfar, _An E_cient Wavelet-Based Algorithm for
Image Superresolution, in IEEE Internation Conference on Image Processing,
2000, pp. 351_354.
[22] S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F.
E. A. El-Samie,_Wavelet Fusion: a Tool to Break the Limits on LMMSE
Image Super-Resolution,_ International Journal of Wavelets, Multiresolution
and Information Processing (IJWMIP),vol. 4, no. 1, pp. 105_118, 2006.
[23] H. Ji and C. Fermüller, _Wavelet-Based Super-Resolution
Reconstruction: Theory and Algorithm,_ in 9th European Conference on
Computer Vision (ECCV), vol. 3954. Springer, 2006, pp. 295_307.
[24] _, _Robust Wavelet-Based Super-Resolution Reconstruction: Theory and
Algorithm,in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 4, Apr.2009, pp. 649_660.
[25] M. B. Chappalli and N. K. Bose, _Simultaneous Noise Filtering and
Super-Resolution With Second-Generation Wavelets,_ IEEE Signal
Processing Letters, vol. 12, no. 11, pp.772_775, Nov. 2005.
[26] A. K. Katsaggelos, Digital Image Restoration. Heidelberg, Germany:
Springer, 1991,vol. 23.
[27] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, _Joint MAP
registration and high resolution image estimation using a sequence of
undersampled images,_ IEEE Transactions on Image Processing, vol. 6, no.
12, pp. 1621_1633, 1997.

[28] J. Tian and K.-K. Ma, _Stochastic super-resolution image
reconstruction,_ Jorunal of Visual Communication and Image Representation,
vol. 21, no. 3, pp. 232_244, 2010.
[29] R. R. Schultz and R. L. Stevenson, _Extraction of High-Resolution
Frames from Video Sequences,_ IEEE Transactions on Image Processing, vol.
5, no. 6, pp. 996_1011, Jun.1996.
[30] K. V. Suresh and A. N. Rajagopalan, _Robust and computationally
e_cient superresolution algorithm,_ Journal of the Optical Society of America,
vol. 24, no. 4, pp. 984_992,Apr. 2007.
[31] S. P. Belekos, N. P. Galatsanos, and A. K. Katsaggelos, _Maximum a
Posteriori Video Super-Resolution Using a New Multichannel Image Prior,_
IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1451_1464, 2010.
[32] H. Shen, L. Zhang, B. Huang, and P. Li, _A MAP Approach for Joint
Motion Estimation, Segmentation, and Super Resolution,_ IEEE Transactions
on Image Processing, vol. 16, no. 2, pp. 479_490, Feb. 2007.
[33] B. C. Tom and A. K. Katsaggelos, _Reconstruction of a high-resolution
image by simultaneous registration, restoration, and interpolation of low-
resolution images,_ in IEEE International Conference on Image Processing
(ICIP). IEEE, 1995, pp. 539_542.
[34] S. Baker and T. Kanade, _Limits on Super-Resolution and How to Break
Them,_ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
24, no. 9, pp. 1167_1183,2002.

Results for multi frame super resolution
Blurred, shifted images of cameraman (Training Input)

Original cameraman (Training Output)

Input

Output
PSNR 20.8118

Input

Output

PSNR
21.4899
Input

Output

PSNR 23.816
Input

Output

 PSNR 24.7524

